R. Padraic Springuel, Michael C. Wittmann, and John R. Thompson
Erratum: Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics [Phys Rev. ST Phys. Educ. Res. 3, 020107 (2007)]
In our paper reported previously in this journal, we explored how cluster analysis, a method from data mining used to find natural groupings in data, could be used to categorize the responses given by students on a free-response question about acceleration in two dimensions. In the process of preparing to expand on that work, however, we discovered that our analysis was both incorrect and incomplete. We were incorrect in that we used default settings in our software package and thereby misidentified the distance measure used. We have since determined that this distance was not appropriate for our data coding. Furthermore, we were incomplete in that we were not sufficiently rigorous in our definition of groups of student responses. We have corrected both of these issues.
This is an erratum related to (and nearly longer than!) the paper found here.
2009-11-09
Springuel Thompson Wittmann correcting a past paper
Labels: cluster analysis, kinematics, Springuel, Thompson, Wittmann
2009-11-05
Black and Wittmann on Resource Creation in Mechanics
Katrina E. Black and Michael C. Wittmann
Procedural Resource Creation in Intermediate Mechanics
AIP Conf. Proc. -- November 5, 2009 -- Volume 1179, pp. 97-101
2009 PHYSICS EDUCATION RESEARCH CONFERENCE
A problem in resource theory is describing the creation of new, high-level resources. We model resource creation by analyzing four student groups separating variables in a group quiz setting. The task was to solve an air resistance problem with uncommon initial conditions. We assess the fluency of each group and two observables: use of overt (such as divide, subtract, equals) and covert (such as moving, bringing, or pulling over) mathematical and use of accompanying gestures (such as circling, grabbing, or sliding). For each group, the type of language and gesture used corresponds to how easily they carry out separation of variables. We create resource graphs for each group to organize our observations and use these graphs to model the creation of the procedural resource Separate Variables.
Wittmann, Anderson, and Smith on teaching Newton's Second Law
Michael C. Wittmann, Mindi Kvaal Anderson, and Trevor I. Smith
Comparing Three Methods for Teaching Newton's Second Law
AIP Conf. Proc. -- November 5, 2009 -- Volume 1179, pp. 301-304
2009 PHYSICS EDUCATION RESEARCH CONFERENCE; doi:10.1063/1.3266742
As a follow-up to a study comparing learning of Newton's Third Law when using three different forms of tutorial instruction, we have compared student learning of Newton's Second Law (NSL) when students use the Tutorials in Introductory Physics, Activity-Based Tutorials, or Open Source Tutorials. We split an algebra-based, life sciences physics course in 3 groups and measured students' pre- and post-instruction scores on the Force and Motion Conceptual Evaluation (FMCE). We look at only the NSL-related clusters of questions on the FMCE to compare students' performance and normalized gains. Students entering the course are not significantly different, and students using the Tutorials in Introductory Physics show the largest normalized gains in answering question on the FMCE correctly. These gains are significant in only one cluster of questions, the Force Sled cluster.
Hawkins, Thompson, and Wittmann on persistence of methods used to add vectors
Jeffrey M. Hawkins, John R. Thompson, and Michael C. Wittmann
Students Consistency of Graphical Vector Addition Method on 2-D Vector Addition Tasks
AIP Conf. Proc. -- November 5, 2009 -- Volume 1179, pp. 161-164
2009 PHYSICS EDUCATION RESEARCH CONFERENCE; doi:10.1063/1.3266704
In a series of ten two-dimensional graphical vector addition questions with varying visual representations, most students stuck to a single solution method, be it correct or incorrect. Changes to the visual representation include placing vectors on a grid, making the vectors arrangements symmetric, varying the separation between vectors, and reversing the direction of either vector. We discuss the questions asked of students and their responses, emphasizing the results of one student who did change solution methods during an interview. ©2009 American Institute of Physics
Smith, Christensen, Thompson on entropy, engines, and cycles
Trevor I. Smith Warren M. Christensen and John R. Thompson
Addressing Student Difficulties with Concepts Related to Entropy, Heat Engines and the Carnot Cycle
AIP Conf. Proc. -- November 5, 2009 -- Volume 1179, pp. 277-280
2009 PHYSICS EDUCATION RESEARCH CONFERENCE; doi:10.1063/1.3266735
We report the rationale behind and preliminary results from a guided-inquiry conceptual worksheet (a.k.a. tutorial) dealing with Carnot's efficiency and the Carnot cycle. The tutorial was administered in an upper-level thermodynamics course at the University of Maine. The tutorial was implemented as the third in a three-tutorial sequence designed to improve students' understanding of entropy and its applications. Initial pre- and post-tutorial assessment data suggest that student understanding of heat engines and the Carnot cycle improved as a result of tutorial instruction