Carolina Alvarado, Michael C. Wittmann, Adam Z. Rogers, and Laura A. Millay
Problematizing "cold" with K12 Science Teachers
In the Maine Physical Sciences Partnership (MainePSP), we have observed that students improve the way they analyze thermal energy after instruction. Still, many of them continue to use the idea that "coldness" transfers. Past researchers have identified that "cold" is commonly perceived as a separate heat energy. Nevertheless, we have not found specific activities to address this idea. We present analysis of students' conceptual understanding of energy transfer and how the use of coldness as an entity plays a role in it. We explore how both ideas interact with each other using two different multiple choice items. To illustrate the difficulty of addressing student difficulties with coldness, we analyze a collaborative session among K-12 teachers who modeled energy transfers in scenarios similar to the student items and had to work to reconcile the conflict between the two models. Our study shows how the concept of coldness as an energy entity can co-exist and be in conflict with the idea of thermal energy, even after instruction.
C. Alvarado, M. C. Wittmann, A. Z. Rogers, and L. A. Millay, Problematizing "cold" with K12 Science Teachers, 2016 PERC Proceedings [Sacramento, CA, July 20-21, 2016], edited by D. L. Jones, L. Ding, and A. Traxler, doi:10.1119/perc.2016.pr.003.
2016-12-29
Alvarado Wittmann Rogers Millay on Teacher knowledge of coldness
Ferm Speirs Stetzer Lindsey on using reasoning chains
William N. Ferm Jr., J. Caleb Speirs, MacKenzie R. Stetzer, and Beth A. Lindsey
Investigating student ability to follow and interact with reasoning chains
The effectiveness of scaffolded, research-based instruction in physics has been extensively documented in the literature. However, much less is known about the development of students' reasoning skills in these research-based instructional environments. As part of a larger collaborative project, we have been designing and implementing tasks to assess the extent to which introductory physics students are able to logically follow and interact with hypothetical student reasoning chains in a variety of physics contexts. In this paper, we report preliminary results from a "Follow Reasoning" task in which students are asked to infer the conclusions that would be drawn from different lines of reasoning articulated by hypothetical students and provide justification for that inference.
W. N. F. Jr., J. C. Speirs, M. R. Stetzer, and B. A. Lindsey, Investigating student ability to follow and interact with reasoning chains, 2016 PERC Proceedings [Sacramento, CA, July 20-21, 2016], edited by D. L. Jones, L. Ding, and A. Traxler, doi:10.1119/perc.2016.pr.025.
Labels: Ferm, metacognition, reasoning, Speirs, Stetzer
Schermerhorn and Thompson on symbolic forms and differential length elements
Benjamin P. Schermerhorn and John R. Thompson
Students’ use of symbolic forms when constructing differential length elements
As part of an effort to examine students' understanding of the structure of non-Cartesian coordinate systems and the differential vector elements associated with these systems, students in junior-level electricity and magnetism (E&M) were interviewed in pairs. Students constructed differential length and volume elements for an unconventional spherical coordinate system. A symbolic forms analysis found that students invoked known as well as novel symbolic forms when building these vector expressions. Further analysis suggests that student difficulties were primarily conceptual rather than symbolic.
B. P. Schermerhorn and J. R. Thompson, Students’ use of symbolic forms when constructing differential length elements, 2016 PERC Proceedings [Sacramento, CA, July 20-21, 2016], edited by D. L. Jones, L. Ding, and A. Traxler, doi:10.1119/perc.2016.pr.073.
Labels: calculus, mathematics, resources, Schermerhorn, symbolic forms, Thompson
Speirs Ferm Stetzer Lindsey on reasoning chains
J. Caleb Speirs, William N. Ferm Jr., MacKenzie R. Stetzer, and Beth A. Lindsey
Probing Student Ability to Construct Reasoning Chains: A New Methodology
Students are often asked to construct qualitative reasoning chains during scaffolded, research-based physics instruction. As part of a multi-institutional effort to investigate and assess the development of student reasoning skills in physics, we have been designing tasks that probe the extent to which students can create and evaluate reasoning chains. In one task, students are provided with correct reasoning elements (i.e., true statements about the physical situation as well as correct concepts and mathematical relationships) and are asked to assemble them into an argument that they can use to answer a specified physics problem. In this paper, the task is described in detail and preliminary results are presented.
J. C. Speirs, W. N. F. Jr., M. R. Stetzer, and B. A. Lindsey, Probing Student Ability to Construct Reasoning Chains: A New Methodology, 2016 PERC Proceedings [Sacramento, CA, July 20-21, 2016], edited by D. L. Jones, L. Ding, and A. Traxler, doi:10.1119/perc.2016.pr.077.
Labels: Ferm, metacognition, reasoning, Speirs, Stetzer
Wittmann Alvarado Millay on facets and metaphors of teacher knowledge of student ideas
Michael C. Wittmann, Carolina Alvarado, and Laura A. Millay
Teachers' explanations of student difficulties with gravitational potential energy
In a teacher professional development meeting, teachers were asked a question about potential energy and then to discuss why students might give a particular response to it. Working together in a large group, they came up with responses and explanations that touched on multiple ways of thinking about energy and how these might affect student responses. We observed that teachers were aware of common metaphors for thinking about energy (like energy-as-a-substance) and that they gave multiple explanations for how students might have difficulties in applying these metaphors (e.g., energy is "used up" because of travel time, travel distance, or the effort exerted during travel). Additional explanations showed that teachers recognized how students might bring these ideas to the classroom. We discuss the need for teachers to respond to multiple grain sizes of student thinking, including the metaphors they use and the different facets of each. Assessments that help with this will be of greater value to teachers than the assessment we present.
M. C. Wittmann, C. Alvarado, and L. A. Millay, Teachers' explanations of student difficulties with gravitational potential energy, 2016 PERC Proceedings [Sacramento, CA, July 20-21, 2016], edited by D. L. Jones, L. Ding, and A. Traxler, doi:10.1119/perc.2016.pr.094.